

Axiometrix Solutions: Mission-Ready Measurement Systems for Defense Solutions

Your One-Stop Partner for Defense Test and Measurement Solutions

Choosing Axiometrix Solutions for your test and measurement needs, you'll gain more than a technology partner; our solutions can help you streamline your development processes, improve product reliability, and reduce costs by offering integrated test systems to address your toughest challenges. With a comprehensive range of hardware, sensors, and software, you'll find all the tools you need to optimize your product design and production at every stage.

Decades of experience delivering solutions to the defense industry across our trusted brands - **Audio Precision**, **GRAS Sound & Vibration**, and **imc Test & Measurement** - means you can trust us to deliver. We are ready to help improve your competitiveness and product value towards defense procurement agencies.

Can-do Attitude

Facing tight deadlines or budget constraints? Axiometrix Solutions' product line can help by giving you ease of use, short installation times, and simple configuration. Our systems and sensors integrate seamlessly into your structures, and are configurable to your specific needs. For unique technical or physical requirements, our team of engineers can work with you to best utilize our solutions to meet your difficult challenges.

Support and Service

When you choose an Axiometrix Solutions product, we are in it together - and we are in it for the long haul. Partnering with us gives you access to extensive product support and service offerings. Our product support experts are available to assist your team in matters like product usage and test procedures five days a week. We are also ready to help with maintenance, repair, and calibration solutions.

Title: Environmental Performance and Durability Assessment of Condenser Microphones in Accordance with MIL-STD-810

Author Name Lars G. Winberg
Affiliation GRAS Sound & Vibration
Contact Information Email: lw@grasacoustics.com
Date September 25, 2024

Abstract

This study evaluates the performance and environmental resilience of $\frac{1}{4}$ ", condenser measurement microphones (IEC 61094) in battlefield applications, subjected to testing in accordance with MIL-STD-810, the military standard for environmental engineering and laboratory tests.

Condenser microphones with high dynamic range, and broad frequency range suited for high level impulsive measurements are essential in various military and industrial applications. They must be designed and manufactured to withstand harsh conditions without compromising the functionality. MIL-STD-810 provides a comprehensive suite of tests designed to replicate the environmental stresses that equipment might encounter in the field.

The investigation covers the evaluation of condenser microphones to a series of MIL-STD-810 test methods, including temperature extremes, humidity, vibration, mechanical shock, sand and dust exposure, and water immersion. These tests simulate rugged and varied environmental conditions very different from what measurement microphones normally face in laboratory conditions. Performance metrics such as frequency response, sensitivity, signal-to-noise ratio, and durability are rigorously measured before, during, and after exposure to these conditions.

The results of these tests offer a detailed understanding of the durability and operational limits of condenser microphones. Key findings indicate if the microphones meet or exceed military standards for environmental resilience, thereby ensuring reliability in critical applications. Additionally, the study has identified design improvements to enhance the robustness of these devices.

By adhering to MIL-STD-810 testing protocols, this research provides valuable insights into the environmental performance of condenser microphones, informing end-users about their suitability for deployment in extreme conditions. The study underscores the importance of rigorous environmental testing in the development and qualification of reliable acoustic sensor equipment for military and industrial use.

1. Introduction

Microphones were first used on the battlefield during World War I. The introduction of wireless communication systems, including radios, necessitated the use of microphones for transmitting voice communications. Today, microphones are used in multiple applications such as communication systems, hostile artillery location systems, sniper detection and location systems, and drone detection and tracking systems.

The acoustic environment on the battlefield is complex, with several sources of noise present:

- Combat Sounds: Impulsive noise sources from gunfire, explosions, and artillery. These can be very high in the near field and very low at longer distances.
- Mechanical Noise: Sounds from vehicles, helicopters, and drones contribute to the overall noise level.
- Environmental Sounds: Wind, rain, and other natural elements can add to the background noise.

At the same time the, noise is spread out over a large frequency range.

- Low-Frequency Noise: Explosions and heavy machinery generate low-frequency sounds that can travel long distances.
- High-Frequency Sounds: Gunshots, with both muzzle noise and bullet noise.

With this complex acoustic environment in mind, selection of microphones for battlefield applications is always a balance between price, performance and durability.

Less costly microphones are typically designed for consumer electronics and automotive applications where noise levels are usually not above 120dB and the background noise is somewhat limited. Exposing microphones designed for consumer electronics to noise levels of 150-160 dB will make the microphone inoperable, as it exceeds the microphones' Acoustic Overload Point, AOP.

The SPL of shockwave signals can reach levels as high as 160 dB, with a very short rise time. This often causes saturation and oscillations. Since meaningful signals can follow immediately after the shockwave, the microphone must have ultrashort recovery time to detect these signals.

Electret condenser microphones, commonly used in consumer electronics, are generally sensitive to humidity and heat. (*Figure 1 and Figure 2*) This sensitivity can lead to performance degradation and reliability issues in harsh environments, making them unsuitable for defense applications. In military settings, where equipment must endure extreme temperatures and moisture levels, the fragility of these microphones poses a significant risk. Therefore, more robust alternatives designed to withstand challenging conditions are preferred for defense use, ensuring consistent functionality and durability in the field. Furthermore, microphones designed for consumer electronics are typically obsolete within years from their introduction, making it difficult to maintain a defense application with an expected lifetime of more than 10 years.

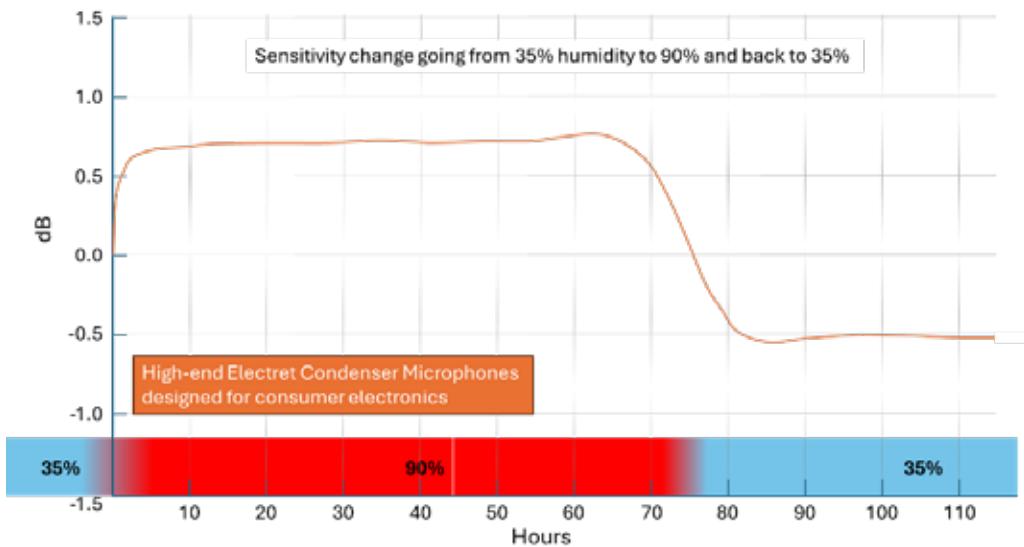


Figure 1 – Typical Sensitivity change for a High-end Electret Condenser Microphone - humidity exposure

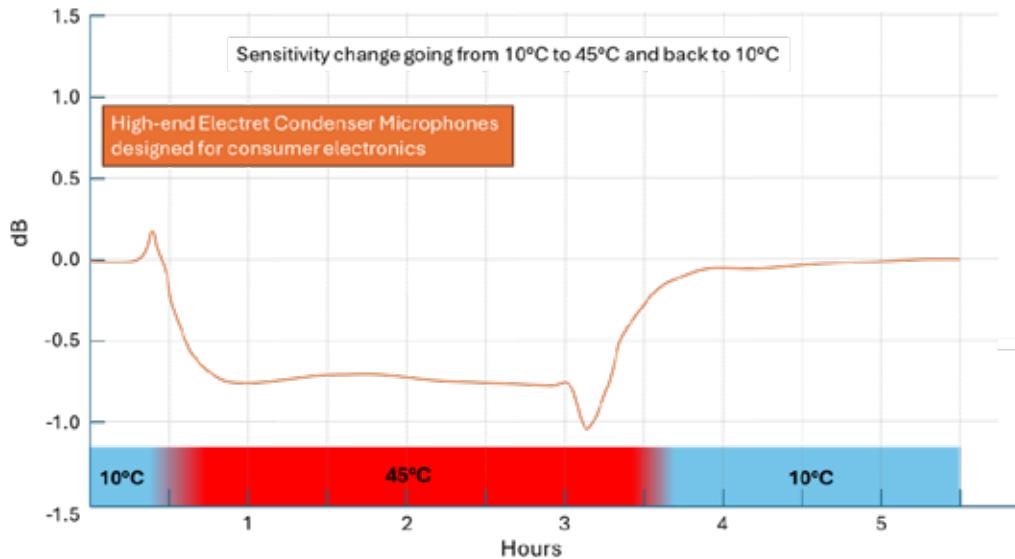


Figure 2 - Typical Sensitivity change for a High-end Electret Condenser Microphone - temperature exposure

Condenser measurement microphones typically have a higher dynamic range and a wider frequency response, making them better suited for capturing nuanced sounds, which is crucial in tactical situations. The wider dynamic range allows them to capture both low and high sound pressure levels (SPL) without distortion, which is vital in varied battlefield conditions. It is also an advantage that condenser microphones can be customized mechanically as well as customized/optimized for specific key parameters.

Evaluating the environmental performance and durability of condenser microphones according to MIL-STD-810 standards is of essence as the battlefield environment is challenging. Different weather conditions such as rain, snow, fog, extreme temperatures, and wind can impact the efficiency of acoustic battlefield systems, as well as vehicle

vibrations and shock during transportation. MIL-STD-810 provides a comprehensive framework for testing military equipment under various environmental conditions, ensuring that it meets the rigorous demands of military operations. Adherence to this standard helps enhance the reliability and effectiveness of equipment in the field.

2. MIL-STD-810 Overview

MIL-STD-810 is a military standard developed by the U.S. Department of Defense (DoD) that outlines testing methods for evaluating the environmental and durability characteristics of equipment and systems. The primary goal is to ensure that military equipment can withstand the harsh conditions encountered in various operational environments.

The purpose of the standard is:

- To establish uniform testing procedures for military equipment to assess its performance under realistic environmental stresses.
- To ensure reliability, durability, and operational readiness in diverse conditions.

In MIL-STD-810G, "tailoring" refers to the process of customizing environmental testing requirements to meet the specific needs and operational conditions of a particular system or equipment. This approach acknowledges that not all military equipment will face the same environmental challenges, so it allows for flexibility in testing protocols.

The tailoring for condenser measurement microphones (IEC 61094) will typically apply to the following tests/exposures:

- Solar Radiation
- Blowing Rain
- High & Low Temperature - Storage
- High & Low Temperature - Operational
- Humidity - Operational
- Thermal Shock
- Blowing Dust & Blowing Sand
- Ground Vehicle Vibration – Low & High Band
- Shock - Functional
- Shock - Crash Safety

3. Methodology

The Equipment Under Test, EUT, was 4 pcs. of GRAS 46BE 1/4" CCP Free-field Microphone Set. The microphones have been slightly modified with a special protection grid to provide better rain protection and a slightly modified vent system. Three of the microphones were mounted in a horizontal position under the tests and one single microphone was mounted vertically to test the microphones in different mounting configurations. (*Figure 3*) All microphones were equipped with a nano-coated windscreen.

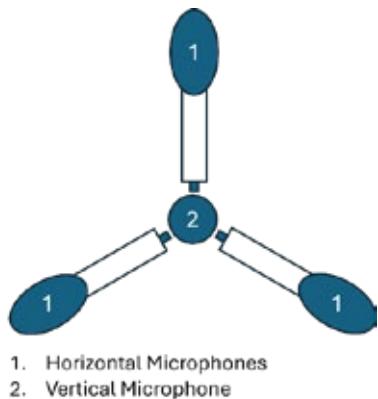


Figure 3 – Microphone mounting

The 46BE microphone is designed to measure high sound pressure levels up to 160 dB and to cover a very wide frequency range (4 Hz to 80 kHz), making it suitable for multiple battlefield applications such as gunshot triangulation and drone detection.

We decided that all relevant tests should be performed consecutively (*Figure 4*) and that the microphones should be calibrated (accredited) before the test campaign and after. We also decided to measure the microphone sensitivity prior to (in-going) and after each individual test (out-going).

Sensitivity can change due to variation in environmental conditions and by physical damage to the microphone. Monitoring any change in sensitivity helps in understanding how these factors affect performance.

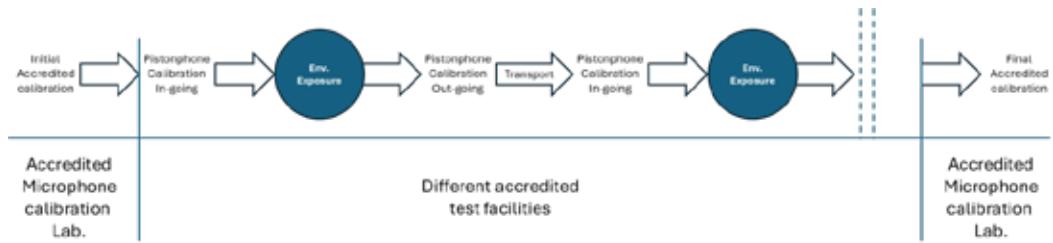


Figure 4 – Consecutive test sequence

Solar Radiation – MIL-STD-810G:2014, Method 505.6, Procedure II, Figure 505.6-II

The EUT was exposed partially to solar radiation 20 h per 24 h. A part of the windscreens was outside the solar radiation exposure, so that the evaluation after completion of the test could show if the exposure had any effect.

Blowing Rain – MIL-STD-810G:2014, Method 506.5, Procedure I

The EUT was exposed to a water density of 1.7 mm/min with a wind velocity of 64 km/h (17.7 m/s) for 30 minutes. The test was repeated multiple times to expose all sides of the EUT.

High & Low Temperature - Storage - MIL-STD-810G:2014, Method 506.6, Procedure I

The EUT was placed in a climate chamber with a constant temperature of +71°C for 2 hours and -40°C for 4 hours. A functional test of the EUT was performed after each temperature exposure.

High & Low Temperature - Operational - MIL-STD-810G:2014, Method 501.6, Procedure II

The EUT was placed in a climate chamber with a constant temperature of +60°C for 2 hours. During the last hour of temperature exposure, a functional test was performed. The EUT was then placed in a climate chamber with a constant temperature of -30°C for 2 hours. During the last hour of the temperature exposure, a functional test was performed.

Humidity - Operational - MIL-STD-810G:2014, Method 507.6, Procedure II - Aggravated

The EUT was exposed to a humidity level of 95% rh \pm 3% rh for a period of 240 hours (10 days). Functional tests were performed on day 5 and on day 10.

Thermal Shock - MIL-STD-810G:2014, Method 503.6, Procedure I-D

The EUT was exposed to multi-cycle temperature shocks at constant extreme temperatures. Two climatic chambers were set to -30°C and +60°C respectively. The EUT was then exposed to each constant temperature for 3 hours, being transferred from cold to hot and from hot to cold.

Blowing Dust & Blowing Sand - MIL-STD-810G:2014, Method 510.6, Procedure I and II

The EUT was placed 300-500 mm from the front of a duct facing directly into the air stream. For the dust test (Figure 5), a concentration of 10.6 ± 7 g/m³ of Arizona Road Dust is blown with an air speed of 8.9 m/s at a temperature of +70°C for 6 hours – the Arizona Road Dust contains a range of particle sizes, with a significant proportion being very fine particles (less than 10 micrometers) that can easily penetrate equipment.

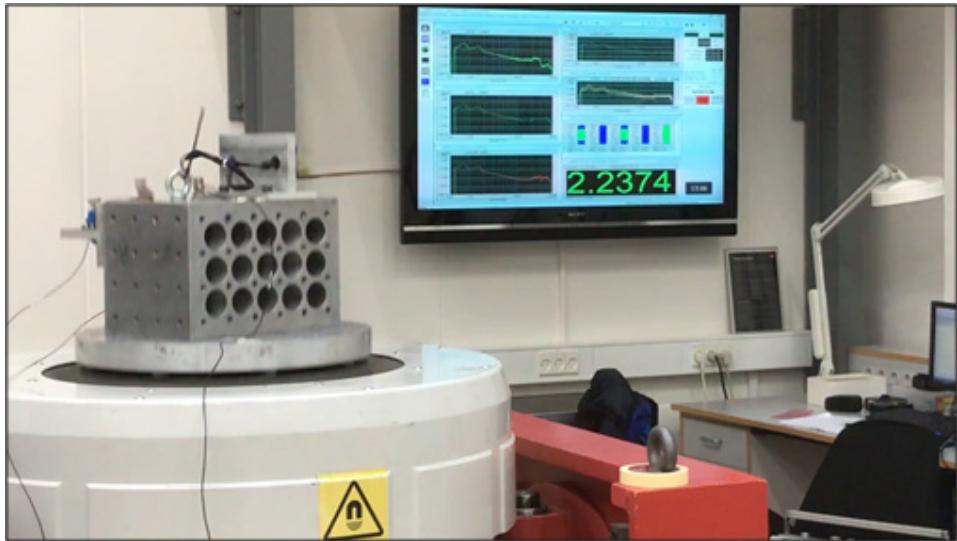

For the sand test, a concentration of 2.2 ± 0.5 g/m³ of Arizona Fine Sand is blown with an air speed of 18 m/s at a temperature of +70°C for 1.5 hours – the Arizona Fine Sand typically has a fine grain size, with particles ranging from 0.15 mm to 0.85 mm (150 to 850 micrometers). This fine texture allows it to mimic the dust and sand found in arid regions.

Figure 5 – Dust Test

Ground Vehicle Vibration – MIL-STD-810G:2014, Method 514.7, Procedure I

The EUT was mounted on an electrodynamic shaker (*Figure 6*) and was randomly vibrated at a level of 2.24 g_{rms} in each of 3 axes, 6 hours in total.

Figure 6 - Ground vehicle vibration

Shock - Functional – MIL-STD-810G:2014, Method 516.7, Procedure I

The EUT was mounted in a shock test system. Peak acceleration was 40 g and the sawtooth pulse duration was 11 ms. The EUT was exposed for 18 shocks, 3 in each of 6 directions. A functional test of the EUT was performed during the shock testing.

Shock Crash Safety – MIL-STD-810G:2014, Method 516.7, Procedure V

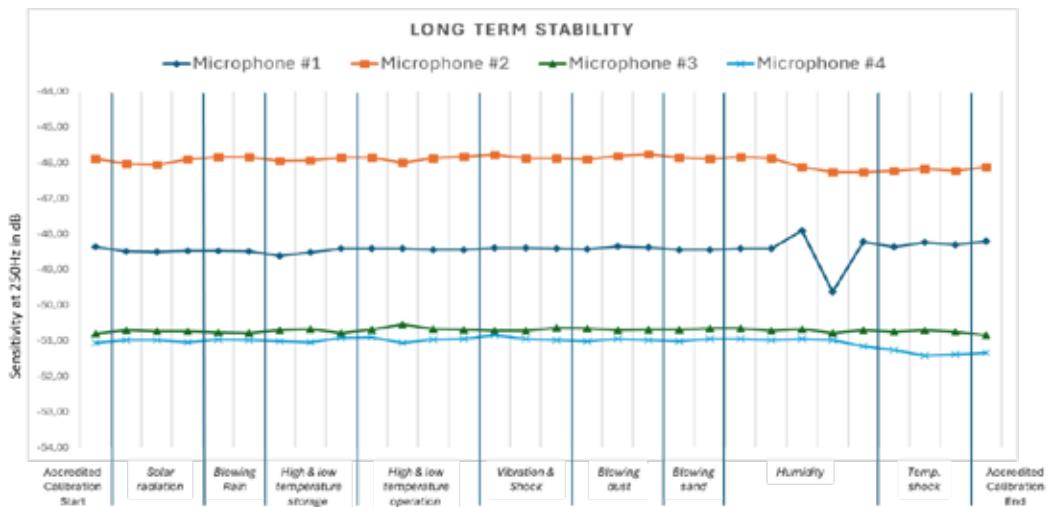
The EUT was mounted in a shock test system. Peak acceleration was 75 g and the sawtooth pulse duration was 6 ms. The EUT was exposed for 12 shocks, 2 in each of 6 directions.

4. Results

The objective of the tests was to ensure the accuracy and reliability of the microphones before and after exposure to environmental stressors. The test period was 6 months. A pre-test in an accredited microphone calibration laboratory was performed prior to the commencement of the MIL-STD-810G tests, on all 4 microphones. The uncertainty for the accredited calibration at 250 Hz was ± 0.08 dB.

Following the completion of the test campaign, the microphones underwent a second round of accredited calibration. This post-test calibration was conducted under the same controlled conditions as the pre-test calibration to ensure consistency.

The MIL-STD-810G testing was performed in different accredited laboratories in different countries in Europe (Denmark, United Kingdom, and Finland). All microphones have been transported as hand luggage to keep the EUT in a controlled environment between the different tests.


The sensitivity measurements indicated that all microphones remained within a deviation of ± 0.3 dB (*Table 1*) from their initial calibrated values. This result demonstrates excellent performance, confirming that the microphones maintained their sensitivity despite exposure to rigorous environmental conditions.

Microphone Number	Before Test Campaign	After Test Campaign	Change
Mic. #1	-48,37 dB	-48,21 dB	0,16 dB
Mic. #2	-45,89 dB	-46,12 dB	-0,23 dB
Mic. #3	-50,80 dB	-50,85 dB	-0,05 dB
Mic. #4	-51,07 dB	-51,34 dB	-0,27 dB

Table 1 - sensitivity analysis of microphones used in a series of MIL-STD-810G tests conducted from July to December

Furthermore, the microphones were calibrated multiple times using GRAS 42AP Intelligent Pistonphone Class 0 during the 6-month test period. The sensitivity was measured and documented prior to all subtests and after all subtests.

The sensitivity measurements were conducted in-situ, utilizing a pistonphone. While this method allowed for real-time assessment under operational conditions, it is important to note that the uncertainty associated with this approach is inherently larger (± 0.2 dB) than that of an accredited calibration performed in a controlled laboratory environment.

Graph 1 - Long Term Stability for all 4 microphones over the 6 months test campaign. Each datapoint represents a sensitivity test before, during or after a subtest.

The sensitivity measurements before and after the subtests (*Graph 1*) exhibited excellent consistency, remaining within a very narrow tolerance range. Despite the larger uncertainty

associated with the in-situ testing method using a pistonphone, the results affirm the robustness and reliability of the microphones.

Microphone #1 shows some change in sensitivity during the aggravated humidity test (10th cycle) at 250 Hz. A deviation of 1 dB was measured. This could indicate that some moisture has penetrated the microphone, slightly degrading its performance. However, the microphone showed no long-term degradation as the sensitivity came back to nominal levels after the test.

This result demonstrates excellent performance, both for long term performance and for shorter time, confirming that the microphones maintained their sensitivity and consequently their overall performance, despite exposure to rigorous environmental conditions.

5. Discussion

Blowing rain occurs when strong winds drive water droplets against the microphone system, potentially saturating the foam that protects the microphone from the wind.

The windscreens surrounding the microphone are designed to minimize wind noise affecting the microphone diaphragm (*Figure 7*). When exposed to blowing rain, this foam can become soaked, which may compromise its ability to effectively dampen wind noise. As a result, the quality of sound captured by the microphone may degrade, leading to erroneous results.

However, replacing the windscreens or waiting for drier conditions will mitigate these effects. Importantly, the resilience of the microphone ensures that it will continue to operate effectively, regardless of the weather conditions affecting the foam.

It was also observed that the windscreens did not provide full protection against blowing dust and sand. The windscreens are porous as it must be almost acoustically transparent. It is therefore not possible to avoid residues of dust and sand inside the windscreens. Replacing or cleaning the windscreens after convoy driving in dusty environments is recommended.

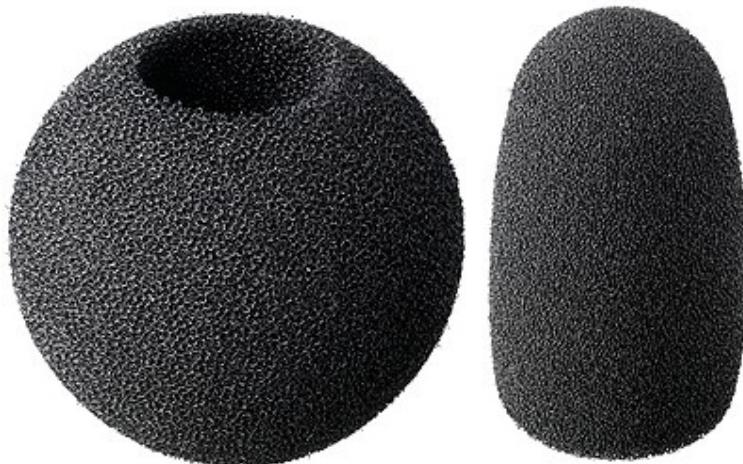


Figure 7 – Nano-coated polyurethane foam used for windscreens

It is recommended that more research is done on the development of a windscreen system able to resist water, sand, and dust. Some possible ideas are:

- Improved hydrophobic foam (water-repellent) materials for windscreens and microphone protection to ensure that the foam does not become saturated.
- Improved dust-resistant foam that has been treated to resist dust accumulation, maintaining its effectiveness over time.

6. Conclusion

The accredited calibration of microphones before and after the MIL-STD-810G test campaign ensured reliable performance and accuracy. The change in sensitivity within ± 0.3 dB for all four microphones indicates that the microphones performed exceptionally well, validating their robustness and suitability for use in harsh environments over a long period of time.

Furthermore, all tests, performed in-situ with a pistonphone in between the accredited calibrations, showed only a minimal deviation. This indicates that the condenser measurement microphone performed exceptionally well, not only over a long period, but also under and after every sub-test.

7. References

- MIL-STD-810G, 31 October 2008, Department of Defense, Test Method Standard – Environmental Engineering Considerations and Laboratory Tests
- Product Information - GRAS 46BE 1/4" CCP Free-field Standard Microphone Set (<https://www.grasacoustics.com/?eID=1709645390&product=7>)
- Product Information - GRAS 42AP Intelligent Pistonphone Class 0 (<https://www.grasacoustics.com/?eID=1709645390&product=88>)

8. Acknowledgments

- BOGHOLM Consulting AB

Drones and UAVs: **Optimize Your UAV Design and Detection Systems**

Unmanned Aerial Vehicles (UAVs) or drones is a rapidly evolving category, both for civilian and defense applications. Developing reliable UAVs is a top priority, and Axiometrix Solutions supports your efforts by providing the end-to-end measurement tools necessary to test drone components. From motors and rotors and beyond, you can ensure that your UAVs meet stringent durability and stealth requirements.

Equally important, we offer the systems and components you need to develop effective fixed, vehicle mounted, or man-carried counter-drone detection solutions. With our integrated approach and tried and tested high-precision measurement and analysis tools, you can confidently develop both UAVs and detection systems for defense and civilian applications.

Aircraft: **Maximizing Mission Readiness of Your Aircraft**

When developing fixed- and rotary-wing aircraft for defense, you need end-to-end solutions that deliver accurate testing for every aspect of performance, from avionics to structural integrity. Choosing our unified testing capabilities allows you to reduce complexity by sourcing all your test and measurement tools from one provider.

We can supply all the tools you need to meet both regulatory and operational demands. Our systems integrate seamlessly into your testing workflows, providing reliable data that accelerates your design and validation phases. Trusted by major aerospace manufacturers, we ensure that your aircraft are mission-ready, reducing the risk of costly delays or performance failures.



Vehicles, Vessels, and Heavy Equipment: **Boosting Durability and Safety in Extreme Conditions**

Your vehicles and equipment must withstand harsh environments while ensuring crew safety. With Axiometrix Solutions on board, you gain access to end-to-end test systems designed to simulate, or measure in, real-world conditions – whether it's rough terrain, extreme weather, or the vibration from engines. Use our solutions to perform accurate measurements and acquire precise and actionable data from R&D to production that allows you to optimize designs and predict potential failures early.

By choosing Axiometrix Solutions you can cut down complexity by sourcing all your test and measurement tools from one provider. This simplifies your R&D and production processes, accelerates time to market, and ensures that your products meet the most stringent defense standards of durability and performance.

Operational Acoustics: **Enhancing Situational Awareness with Precision Acoustics**

In modern defense applications, precise sound detection is critical for situational awareness and quick response. For over 25 years, Axiometrix Solutions has provided MIL-STD-810 compliant condenser microphones that enhance your acoustic systems. By partnering with us, you'll be able to source microphones for current defense applications. You'll also gain access to comprehensive testing systems that support the development of next-generation equipment.

By sourcing your test and measurement tools from one trusted provider, you can reduce complexity and simplify your R&D and production processes. And you can ensure that your acoustic devices deliver the accuracy needed to gain a tactical edge in the field - and a competitive edge on the market.

Critical Communications: **Ensuring Clear Communication in Critical Moments**

Clear communication is vital to the success of air and ground operations. Whether you're developing headsets for pilots or hearing protection for crews, we have the advanced testing tools you need to ensure your communication systems perform under extreme conditions. Our turnkey solutions reduce the need for multiple vendors and minimize integration issues, saving time and reducing costs throughout the equipment development lifecycle.

With our extensive range of user-friendly audio analyzers, software, and data acquisition systems, coupled with our ANSI/ASA S12.42 compliant acoustic fixtures and ear simulators, you'll be

able to validate sound isolation and clarity to the highest standards. This can help you ensure that your products meet regulations and exceed the expectations of your end users.

Meet the Axiometrix Solutions Brands:

Audio Precision (AP)

AP is the recognized global standard in audio tests. AP provides high-performance audio analyzers, audio measurement software, accessories, and applications to help engineers worldwide design, test, validate, characterize and manufacture consumer, professional and industrial audio products.

www.ap.com

GRAS Sound & Vibration

For over 25 years, GRAS has delivered condenser microphones and advanced audio testing peripherals for defense applications. Our MIL-STD-810 and ANSI/ASA S12.42 compliant solutions provide fast, accurate sound detection for critical situational awareness—whether localizing threats or ensuring clear communication in extreme conditions.

www.GRASacoustics.com

imc Test & Measurement GmbH

For 30 years, imc has created tools that empower engineers to efficiently deploy data acquisition (DAQ) systems and test strategies, meeting the test and measurement challenges of development departments world-wide. imc solutions are well suited for mixed signal testing of complex mechanical and electromechanical systems.

www.imc-tm.com

CONTACT

For further information, please contact

Business Development Manager,

Lars Winberg.

E-mail: lw@grasacoustics.com

Phone: +45 4566 4046

Visit Our Website for More Information on Our
Defense Test and Measurement Solutions.