From ¼″ to ⅛″ microphones


Why so small?

The Accuracy at high frequencies is vital, and... post, deals with the benefits of using a ¼″ microphone compared to the more commonly used ½″ mics and measurement scenarios where those benefits outweighed the drawbacks, or where the drawbacks weren’t relevant. The obvious question, of course, is why stop at the ¼″ microphone? If there are benefits to smaller microphones, and the areas of interest in noise mitigation and sound quality trending to hi-res and higher frequencies, how small can microphones get and still be viable?


Accuracy at high frequencies is vital, and...


Microphone size matters

In any measurement scenario, the measurement equipment and the measurement environment interact in two ways. The first and simplest way is how the microphone ‘adds’ data to the environment, and the second is how the microphone ‘extracts’ data from the environment. And size has a great impact in both directions.


Aerodynamics, Aeroacoustics, Turbulence and Boundary Layers, Oh My…


Where does your noise come from?

Our perception of what is and is not an acceptable noise level has changed a great deal in the past 100, or even 25 years. The change in designs for improvements in transit times, fuel economy and even energy production are visible all around us and impact our daily lives. Vehicles on the motorway, local commuter and high-speed trains, aircraft, and wind turbines all impact our lives in various ways, including the addition of noise.